# 第18章_MySQL8.0的其它新特性
CREATE DATABASE dbtest18;
USE dbtest18;
# 一、 窗口函数
# 1.1 演示窗口函数的效果
CREATE TABLE sales(
id INT PRIMARY KEY AUTO_INCREMENT,
city VARCHAR(15),
county VARCHAR(15),
sales_value DECIMAL
);
INSERT INTO sales(city,county,sales_value)
VALUES
('北京','海淀',10.00),
('北京','朝阳',20.00),
('上海','黄埔',30.00),
('上海','长宁',10.00);
SELECT * FROM sales;
# 需求:现在计算这个网站在每个城市的销售总额、在全国的销售总额、
# 每个区的销售额占所在城市销售额中的比率,以及占总销售额中的比率。
#实现方式1:
CREATE TEMPORARY TABLE a -- 创建临时表
SELECT SUM(sales_value) AS sales_value -- 计算总计金额
FROM sales;
SELECT * FROM a;
CREATE TEMPORARY TABLE b -- 创建临时表
SELECT city,SUM(sales_value) AS sales_value -- 计算城市销售合计
FROM sales
GROUP BY city;
SELECT * FROM b;
SELECT s.city AS 城市,s.county AS 区,s.sales_value AS 区销售额,
b.sales_value AS 市销售额,s.sales_value/b.sales_value AS 市比率,
a.sales_value AS 总销售额,s.sales_value/a.sales_value AS 总比率
FROM sales s
JOIN b ON (s.city=b.city) -- 连接市统计结果临时表
JOIN a -- 连接总计金额临时表
ORDER BY s.city,s.county;
#方式2:
SELECT city AS 城市,county AS 区,sales_value AS 区销售额,
SUM(sales_value) OVER(PARTITION BY city) AS 市销售额, -- 计算市销售额
sales_value/SUM(sales_value) OVER(PARTITION BY city) AS 市比率,
SUM(sales_value) OVER() AS 总销售额, -- 计算总销售额
sales_value/SUM(sales_value) OVER() AS 总比率
FROM sales
ORDER BY city,county;
# 2. 介绍窗口函数
CREATE TABLE employees
AS
SELECT * FROM atguigudb.employees;
SELECT * FROM employees;
#准备工作
CREATE TABLE goods(
id INT PRIMARY KEY AUTO_INCREMENT,
category_id INT,
category VARCHAR(15),
NAME VARCHAR(30),
price DECIMAL(10,2),
stock INT,
upper_time DATETIME
);
INSERT INTO goods(category_id,category,NAME,price,stock,upper_time)
VALUES
(1, '女装/女士精品', 'T恤', 39.90, 1000, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '连衣裙', 79.90, 2500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '卫衣', 89.90, 1500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '牛仔裤', 89.90, 3500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '百褶裙', 29.90, 500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '呢绒外套', 399.90, 1200, '2020-11-10 00:00:00'),
(2, '户外运动', '自行车', 399.90, 1000, '2020-11-10 00:00:00'),
(2, '户外运动', '山地自行车', 1399.90, 2500, '2020-11-10 00:00:00'),
(2, '户外运动', '登山杖', 59.90, 1500, '2020-11-10 00:00:00'),
(2, '户外运动', '骑行装备', 399.90, 3500, '2020-11-10 00:00:00'),
(2, '户外运动', '运动外套', 799.90, 500, '2020-11-10 00:00:00'),
(2, '户外运动', '滑板', 499.90, 1200, '2020-11-10 00:00:00');
SELECT * FROM goods;
# 序号函数
# 1.1 ROW_NUMBER()函数
# 举例:查询 goods 数据表中每个商品分类下价格降序排列的各个商品信息。
SELECT ROW_NUMBER() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
id, category_id, category, NAME, price, stock
FROM goods;
# 举例:查询 goods 数据表中每个商品分类下价格最高的3种商品信息。
SELECT *
FROM (
SELECT ROW_NUMBER() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
id, category_id, category, NAME, price, stock
FROM goods) t
WHERE row_num <= 3;
# 1.2 RANK()函数
# 举例:使用RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息。
SELECT RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
id, category_id, category, NAME, price, stock
FROM goods;
# 1.3 DENSE_RANK()函数
# 举例:使用DENSE_RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息。
SELECT DENSE_RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
id, category_id, category, NAME, price, stock
FROM goods;
# 2. 分布函数
# 2.1 PERCENT_RANK()函数
# 举例:计算 goods 数据表中名称为“女装/女士精品”的类别下的商品的PERCENT_RANK值。
#方式1:
SELECT RANK() OVER w AS r,
PERCENT_RANK() OVER w AS pr,
id, category_id, category, NAME, price, stock
FROM goods
WHERE category_id = 1 WINDOW w AS (PARTITION BY category_id ORDER BY price DESC);
#方式2:
SELECT RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS r,
PERCENT_RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS pr,
id, category_id, category, NAME, price, stock
FROM goods
WHERE category_id = 1;
# 2.2 CUME_DIST()函数
# 举例:查询goods数据表中小于或等于当前价格的比例。
SELECT CUME_DIST() OVER(PARTITION BY category_id ORDER BY price ASC) AS cd,
id, category, NAME, price
FROM goods;
# 3. 前后函数
# 3.1 LAG(expr,n)函数
# 举例:查询goods数据表中前一个商品价格与当前商品价格的差值。
SELECT id, category, NAME, price, pre_price, price - pre_price AS diff_price
FROM (
SELECT id, category, NAME, price,LAG(price,1) OVER w AS pre_price
FROM goods
WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
#其中,子查询如下:
SELECT id, category, NAME, price,LAG(price,1) OVER (PARTITION BY category_id ORDER BY price) AS pre_price
FROM goods;
# 3.2 LEAD(expr,n)函数
# 举例:查询goods数据表中后一个商品价格与当前商品价格的差值。
SELECT id, category, NAME, behind_price, price,behind_price- price AS diff_price
FROM(
SELECT id, category, NAME, price,LEAD(price, 1) OVER w AS behind_price
FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
#其中,子查询为:
SELECT id, category, NAME, price,LEAD(price, 1) OVER (PARTITION BY category_id ORDER BY price) AS behind_price
FROM goods;
# 4. 首尾函数
# 4.1 FIRST_VALUE(expr)函数
# 举例:按照价格排序,查询第1个商品的价格信息。
SELECT id, category, NAME, price, stock,FIRST_VALUE(price) OVER (PARTITION BY category_id ORDER BY price) AS first_price
FROM goods;
# 4.2 LAST_VALUE(expr)函数
# 5. 其他函数
# 5.1 NTH_VALUE(expr,n)函数
# 举例:查询goods数据表中排名第2和第3的价格信息。
SELECT id, category, NAME, price,
NTH_VALUE(price,2) OVER (PARTITION BY category_id ORDER BY price) AS second_price,
NTH_VALUE(price,3) OVER (PARTITION BY category_id ORDER BY price) AS third_price
FROM goods ;
# 5.2 NTILE(n)函数
# 举例:将goods表中的商品按照价格分为3组。
SELECT NTILE(3) OVER (PARTITION BY category_id ORDER BY price) AS nt,id, category, NAME, price
FROM goods;
# 二、新特性2:共用表表达式
# 2.1 普通共用表表达式
# 举例:查询员工所在的部门的详细信息。
CREATE TABLE departments
AS
SELECT * FROM atguigudb.departments;
#子查询实现
SELECT * FROM departments
WHERE department_id IN (
SELECT DISTINCT department_id
FROM employees
);
#CTE实现
WITH cte_emp
AS ( SELECT DISTINCT department_id FROM employees )
SELECT *
FROM departments d JOIN cte_emp e
ON d.department_id = e.department_id;
# 2.2 递归共用表表达式
#
SELECT * FROM employees;
#举例:找出公司employees表中所有的下下属。
WITH RECURSIVE cte
AS
(
SELECT employee_id,last_name,manager_id,1 AS n FROM employees WHERE employee_id = 100 -- 种子查询,找到第一代领导
UNION ALL
SELECT a.employee_id,a.last_name,a.manager_id,n+1 FROM employees AS a JOIN cte
ON (a.manager_id = cte.employee_id) -- 递归查询,找出以递归公用表表达式的人为领导的人
)
SELECT employee_id,last_name FROM cte WHERE n >= 3;
暂无评论