1、TCP/IP五层协议讲解
物理层–数据链路层–网络层–传输层–应用层
我们将应用层,表示层,会话层并作应用层,从tcp/ip五层协议的角度来阐述每层的由来与功能,搞清楚了每层的主要协议
就理解了整个互联网通信的原理。
首先,用户感知到的只是最上面一层应用层,自上而下每层都依赖于下一层,所以我们从最下一层开始切入,比较好理解
每层都运行特定的协议,越往上越靠近用户,越往下越靠近硬件
2、物理层
物理层由来:上面提到,孤立的计算机之间要想一起玩,就必须接入internet,言外之意就是计算机之间必须完成组网
物理层功能:主要是基于电器特性发送高低电压(电信号),高电压对应数字1,低电压对应数字0
3、数据链路层(以太网协议:)
数据链路层由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位一组,每组什么意思
数据链路层的功能:定义了电信号的分组方式
以太网协议:
早期的时候各个公司都有自己的分组方式,后来形成了统一的标准,即以太网协议ethernet
ethernet规定
- 一组电信号构成一个数据包,叫做‘帧’
- 每一数据帧分成:报头head和数据data两部分
mac地址:(网卡的地址)
head中包含的源和目标地址由来:ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址
mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)
广播:
有了mac地址,同一网络内的两台主机就可以通信了(一台主机通过arp协议获取另外一台主机的mac地址)
ethernet采用最原始的方式,广播的方式进行通信,即计算机通信基本靠吼
4、网络层(ip协议)
网络层由来:有了ethernet、mac地址、广播的发送方式,世界上的计算机就可以彼此通信了,问题是世界范围的互联网是由
一个个彼此隔离的小的局域网组成的,那么如果所有的通信都采用以太网的广播方式,那么一台机器发送的包全世界都会收到,
这就不仅仅是效率低的问题了,这会是一种灾难
必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,
就采用路由的方式(向不同广播域/子网分发数据包),mac地址是无法区分的,它只跟厂商有关
网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址
4.1、IP协议:
- 规定网络地址的协议叫ip协议,它定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
- 范围0.0.0.0-255.255.255.255
- 一个ip地址通常写成四段十进制数,例:172.16.10.1
子网掩码:将ip地址分为网络地址和主机地址
所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。
子网掩码是用来标识一个IP地址的哪些位是代表网络位,以及哪些位是代表主机位。子网掩码不能单独存在,它必须结合IP地址一起使用。子网掩码只有一个作用,就是将某个IP地址划分成网络地址和主机地址两部分。
区分网络位和主机位是为了划分子网,把一个大网络分成多个小网络
优点:避免广播风暴和地址浪费
4.2、ARP协议
arp协议由来:计算机通信基本靠吼,即广播的方式,所有上层的包到最后都要封装上以太网头,然后通过以太网协议发送,在谈及以太网协议时候,我门了解到
通信是基于mac的广播方式实现,计算机在发包时,获取自身的mac是容易的,如何获取目标主机的mac,就需要通过arp协议
arp协议功能:广播的方式发送数据包,获取目标主机的mac地址
协议工作方式:每台主机ip都是已知的
例如:主机172.16.10.10/24访问172.16.10.11/24
三:这个包会以广播的方式在发送端所处的子网内传输,所有主机接收后拆开包,发现目标ip为自己的,就响应,返回自己的mac
4.3、ICMP协议
前面讲到了,IP协议并不是一个可靠的协议,它不保证数据被送达,那么,自然的,保证数据送达的工作应该由其他的模块来完成。其中一个重要的模块就是ICMP(网络控制报文)协议。
当传送IP数据包发生错误--比如主机不可达,路由不可达等等,ICMP协议将会把错误信息封包,然后传送回给主机。给主机一个处理错误的机会.
我们一般主要用ICMP协议检测网络是否通畅,基于ICMP协议的工具主要有ping 和traceroute
ping:
ping这个单词源自声纳定位,而这个程序的作用也确实如此,它利用ICMP协议包来侦测另一个主机是否可达。
原理是用类型码为0的ICMP发请 求,受到请求的主机则用类型码为8的ICMP回应。
ping程序来计算间隔时间,并计算有多少个包被送达。用户就可以判断网络大致的情况。我们可以看到, ping给出来了传送的时间和TTL的数据。
用来查看从当前主机到某地址一共经过多少跳路由 ——window 用命令:tracert———-linux命令:tracerout
5、传输层(建立端口到端口的通信tcp/udp)
传输层的由来:网络层的ip帮我们区分子网,以太网层的mac帮我们找到主机,然后大家使用的都是应用程序,你的电脑上可能同时开启qq,暴风影音,迅雷等多个应用程序,
那么我们通过ip和mac找到了一台特定的主机,如何标识这台主机上的应用程序呢?答案就是端口,端口即应用程序与网卡关联的编号。
传输层功能:建立端口到端口的通信
补充:端口范围0-65535,0-1023为系统占用端口
传输层有两种协议,TCP和UDP,见下图
5.1、tcp协议
可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。
5.2、tcp的3次握手和4次挥手
TCP的3次握手
每当建立一个TCP/IP连接的时候都要经历3次握手,这是为了保证建立一个可靠的连接。
客户端向服务器发请求,服务器接收请求,服务器接收请求之后发送一个连接标志,客户端接收连接标志之后也向服务器发送一个连接标志,至此连接完成。用打电话类比的话就是:
小明拨打小红的电话
小红按下通话键并说了声,喂 (一次握手)
小明听到小红的回应,也说了声,喂 (二次握手)
小红接收到小明的回应 (三次握手)
TCP4次挥手
为什么有4次挥手呢,4次挥手的作用就是断开连接,之所以要断开连接是因为TCP/IP协议是要占用端口的,而计算机的端口是有限的,所以一次传输完成之后是要断开连接的,断开连接的方式就是4次挥手。
连接是由客户端发起的,所以断开连接也要有客户端发起,因为服务器是被动的。上图的最后一部分就是4次挥手,还是用小明和小红打电话来类比,
小明:我这没事儿了,你还有事儿吗? (1次挥手)
小红:我也没事儿了,你确定没事儿了吗? (2次挥手)
小红:我要挂电话了。 (3次挥手)
小明:好吧,你挂吧。 (4次挥手)
6、UDP协议
不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。
不要建立链接,不需要对方确认,不可靠,但效率高